Сообщений 2    Оценка 141        Оценить  
Система Orphus

Шаблоны с переменным количеством аргументов в C++11

Автор: Садовников Сергей Михайлович
Перевод:
Источник:
Материал предоставил:
Опубликовано: 14.05.2012
Исправлено: 10.12.2016
Версия текста: 1.3
Простые варианты использования
Простой функтор на variadic templates
Более сложные случаи
Реализация универсального функтора-композитора
Ещё некоторое количество хитростей

Те, кто читал книгу Андрея Александреску «Современное программирование на C++», знают, что существует обширный класс задач (в области метапрограммирования с использованием шаблонов), когда шаблону при воплощении (instantiation) необходимо указать переменное (заранее неизвестное) количество аргументов. Типичные примеры таких задач:

В каждой такой задаче точное количество параметров, передаваемых соответствующему шаблону в качестве аргументов, заранее определить сложно. И, вообще говоря, зависит от желания и потребностей того, кто намеревается использовать соответствующий шаблонный класс.В рамках действующего стандарта С++ сколь-нибудь удобного решения таких задач не существует. Шаблоны могут принимать строго определённое количество параметров и никак иначе. А. Александреску (в упомянутой выше книге) предлагает общее решение, основанное на так называемых «списках типов», в котором типы представлены в виде односвязного списка, реализованного посредством рекурсивных шаблонов. Альтернативным решением (используемым, например, в boost::variant и boost::tuple) является объявление шаблонного класса с большим количеством параметров, которым (всем, кроме первого) присвоено некоторое значение по умолчанию. Оба этих решения являются половинчатыми и не охватывают весь спектр возможных задач. Поэтому для устранения недостатков существующих решений и упрощения кода новый стандарт предлагает С++-разработчикам новый вариант объявления шаблонов: «шаблоны с переменным количеством параметров» или, в оригинале, «variadic templates».

Простые варианты использования

Объявление шаблона с переменным количеством параметров выглядит следующим образом:

      template<typename ... Types>
class VariadicTemplate
{
};

подобным же образом объявляются шаблоны с переменным количеством параметров-не типов:

      template<int ... Ints>
class VariadicTemplate
{
};
ПРИМЕЧАНИЕ

Здесь необходимо отметить, что эмуляция подобного в рамках стандарта 2003-го года — весьма нетривиальная задача (если не сказать, что невыполнимая).

Помимо шаблонных классов, можно также объявлять шаблонные функции с переменным количеством параметров. Подобные объявления могут выглядеть следующим образом:

      template<typename ... Type>
void printf(constchar* format, Type ... args);

Очевидно, что такого рода параметры шаблонов (они называются «пакетами параметров» или «parameter packs») не могут использоваться везде, где могут использоваться обычные (одиночные) параметры шаблонов. Допустимо использование пакетов параметров в следующих контекстах:

ПРИМЕЧАНИЕ

Атрибуты (attributes) – новое понятие, появившееся в C++11. Позволяет ассоциировать с различными конструкциями языка (типами, переменными, декларациями, блоками или единицами трансляции) дополнительную информацию. Например, атрибут [[noreturn]], добавленный к декларации функции, означает, что функция никогда (при штатной работе) не вернёт управление.

В зависимости от того, где именно используется пакет параметров, соответствующим образом интерпретируются элементы этого пакета. Само использование пакета параметров называется «раскрытием пакета» (pack expansion) и записывается в коде следующим образом:

Types ...

Где Types — это название пакета параметров.

Например, для такого объявления шаблона:

      template<typename ... Types>
class VariadicTemplate
{
};

возможные варианты раскрытия пакета параметров могут выглядеть так:

      // раскрытие в список базовых классов. 'public Types' - паттерн
      
      class VariadicTemplate : public Types ...
{
//...// Раскрытие в список параметров другого шаблона. Паттерн - Typestypedef OtherVariadicTemplate<Types ...> OtherVT;
    // Более сложный вариант. Паттерн - Types *typedef OtherVariadicTemplate<Types* ...> SomeOtherVT;
    // Раскрытие в список параметров функции. Паттерном является Types,     // a args - это новый список параметров:voidoperator () (Types ... args)
    {
        // Раскрытие в список аргументов при вызове функции        // Операция взятия адреса будет подставлена к каждому аргументу
        foo(&args ...);
    }
    // Раскрытие в списке инициализации в конструкторе:
    VariadicTemplate() : Types() ...
};

Под термином «паттерн» здесь понимается фрагмент кода, окружающего имя пакета параметров, который будет повторяться при раскрытии соответствующего пакета. В приведённом примере, если провести раскрытие параметров вручную, то получится, что такое воплощение шаблона:

      /* ... */ VariadicTemplate<int, char, double> /* ... */

Будет раскрыто следующим образом:

      class VariadicTemplate : publicint, publicchar, publicdouble
{
//...typedef OtherVariadicTemplate<int, char, double> OtherVT;
    typedef OtherVariadicTemplate<int*, char*, double*> SomeOtherVT;
    voidoperator () (int args1, char args2, double args3)
    {
        foo(&args1, &args2, &args3);
    }
    VariadicTemplate() : int(), char(), double() // очевидно, этот код получится некомпилируемым для такого списка типов
};
ПРИМЕЧАНИЕ

Вне зависимости от контекста, в процессе раскрытия пакета параметров в качестве разделителя элементов компилятор использует запятую.

Простой функтор на variadic templates

В качестве достаточно простого примера использования шаблонов с переменным числом параметров можно привести реализацию функтора. Выглядит эта реализация следующим образом:

        #include <iostream>

// Объявляем общий вариант шаблона, хранящего указатель на функцию. // При этом все возможные типы, которые могут придти в шаблон// в процесс воплощения, мы упаковываем в пакет параметровtemplate<typename ... Args> struct FunctorImpl;

// Специализируем шаблон для указателя на простые функции. // При этом указываем, что пакет параметров содержит тип возвращаемого// значения (R) и аргументы (Args). Из этих двух параметров // (простого, и пакетного) затем формируем сигнатуру функцииtemplate<typename R, typename ... Args>
struct FunctorImpl<R (Args ...)>
{
    // Описываем тип указателя на функцию с нужной сигнатурой.     // При этом раскрываем пакет параметровtypedef R (*FT)(Args ...);
    
    FunctorImpl(FT fn) : m_fn(fn) {;}
    
    // Объявляем оператор вызова функции таким образом, что он принимает     // на вход ровно столько параметров, сколько аргументов// у хранимого типа функции.
    R operator () (Args ... args)
    {
        // Вызываем функцию, передавая ей все полученные аргументыreturn m_fn(args ...);
    }
    
    FT m_fn;
};

// Объявляем общий шаблон-диспетчерtemplate<typename FT>
struct Functor : public FunctorImpl<FT>
{
    Functor() : FunctorImpl<FT>(NULL) {;}
    Functor(FT fn) : FunctorImpl<FT>(fn) {;}
};

int plus_fn(int a, int b) {return a + b;}
int minus_fn(int a, int b) {return a - b;}
int increment(int& a) {return a ++;}

int main()
{
    Functor<int (int, int)> plus(plus_fn);
    Functor<int (int, int)> minus(minus_fn);
    Functor<int (int&)> inc(increment);

    std::cout << plus(10, 20) << " " << minus(10, 20) << std::endl;

    int a = 100;
    std::cout << inc(a) << " ";
    std::cout << a << std::endl;
}

Результат выполнения этого кода вполне ожидаемый:

30 -10

100 101

а код — простой и понятный. Для сравнения можно посмотреть файлы с реализацией boost::function.

Описанные выше шаблоны несложно специализировать для указателей на функции-члены:

        // Объявляем специализацию контейнера функции для указателя на функцию член,
        // конкретизируя всё тот же пакет параметров
        template<typename T, typename R, typename ... Args>
struct FunctorImpl<R (T::*)(Args ...)>
{
    typedef R (T::*FT)(Args ...);
    typedef T HostType;
    
    FunctorImpl(FT fn = nullptr, T* obj = nullptr) : m_fn(fn), m_obj(obj) {;}
    
    // Объявляем два варианта оператора вызова функции - для случая, когда     // функтор используется как "замыкание", и когда объект,// для которого вызывается метод, передаётся первым аргументом
    R operator() (Args... args)
    {
        (m_obj->*m_fn)(args ...);
    }
    
    R operator() (T* obj, Args... args)
    {
        (obj->*m_fn)(args ...);
    }
    
    FT m_fn;
    T* m_obj;
};


// Объявляем класс-замыкание, принимающий в конструкторе объект, для которого// будет вызываться функция-член. Выглядит он очень простоtemplate<typename FT>
struct Closure : public FunctorImpl<FT>
{
    typedeftypename FunctorImpl<FT>::HostType HostType;
    Closure(HostType* obj, FT fn) : FunctorImpl<FT>(fn, obj) {;}
};

// Использованиеclass A
{
public:
    A(int base = 0) : m_base(base) {;}
    int foo(int a) {return a + m_base;}
    
private:
    int m_base;
};

A b1(10), b2;
Closure<int (A::*)(int)> a_foo(&b1, &A::foo);
// Можно заметить, что общаяя реализация функтора также корректно работает // с указателями на функции-члены
Functor<int (A::*)(int)> b_foo(&A::foo);

std::cout << a_foo(20) << " " << b_foo(&b2, 20) << " " << b_foo(&b1, 20) << std::endl;

Приведённый пример достаточно прост и наглядно демонстрирует основные возможности шаблонов с переменным количеством параметров. Анализируя его, можно определить следующую общую схему использования шаблонов с переменным количеством параметров:

1. Декларируется наиболее общий шаблон, последний параметр которого описывается в виде пакета параметров. В примере это:

        template<typename ... Args> struct FunctorImpl;

2. Определяются частичные специализации этого шаблона, конкретизирующие ту или иную часть пакета параметров. В приведённом примере это определение:

        template<typename R, typename ... Args>    struct FunctorImpl<R (Args ...)>

3. В ряде случаев при специализации может потребоваться учитывать, что пакет параметров может оказаться пустым. Такое, вообще говоря, допустимо.

ПРИМЕЧАНИЕ

При этом необходимо помнить, что в случае с шаблонными классами, параметры, упакованные в пакет, могут конкретизироваться, начиная с головы пакета. Конкретизировать параметры, начиная с хвоста пакета, невозможно (в силу того, что пакет параметров может только замыкать список параметров шаблона). В отношении шаблонных функций такого ограничения нет.

Более сложные случаи

Как отмечалось выше, пакеты параметров могут содержать не только типы, но и не-типы. Например:

      // Объявляем шаблон, принимающий переменное количество целых чисел
      template<int ... Nums>
struct NumsPack
{
    // Объявляем статический массив, размер которого равен количеству     // фактически переданных аргументовstaticint m_nums[sizeof...(Nums)];
    // А также объявляем перечисление, сохраняющее количество элементов в массивеenum {nums_count = sizeof ... (Nums)};
};

// Инициализируем статический массивtemplate<int ... Nums>
int NumsPack<Nums ...>::m_nums[] = {Nums ...};

Проверочный код:

      typedef NumsPack<10, 20, 30, 40, 50> Nums_5;
std::cout << Nums_5::nums_count << std::endl;
for (int n = 0; n < Nums_5::nums_count; ++ n)
    std::cout << Nums_5::m_nums[n] << " ";
std::cout << std::endl;

печатает на консоль ожидаемые

5

10 20 30 40 50

Конструкция sizeof ... (Nums), приведённая в этом примере, используется для получения количества параметров в пакете. В ней Nums — это имя пакета параметров. К сожалению, дизайн шаблонов с переменным количеством параметров таков, что это — единственное, что можно сделать с пакетом параметров (помимо его непосредственно раскрытия). Получить параметр из пакета по его индексу, например, или совершить какие-либо более сложные манипуляции в рамках проекта нового стандарта невозможно.

При раскрытии пакетов можно применять более сложные паттерны. Например, в приведённом выше коде можно сделать следующую замену:

      template<int ... Nums>
int NumsPack<Nums ...>::m_nums[] = {Nums * 10  ...};

что приведёт к выводу на экран другой последовательности:

100 200 300 400 500

ПРИМЕЧАНИЕ

Вообще, конкретный вид паттерна зависит от контекста, в котором он раскрывается. Более того, паттерн может содержать упоминание более одного пакета параметров. В этом случае все упомянутые в паттерне пакеты будут раскрываться синхронно, а потому количество фактических параметров в них должно совпадать.

Реализация универсального функтора-композитора

Предположим, необходимо организовать универсальный функтор-композитор, задача которого — передать в некоторую функцию результаты выполнения заданных функций для некоего аргумента. Пусть существует некоторый набор функций:

        double fn1(double a)
{
    return a * 2;
}

int fn2(int a)
{
    return a * 3;
}

int fn3(int a)
{
    return a * 4;
}

И две операции:

        int test_opr(int a, int b)
{
    return a + b;
}

int test_opr3(int a, int b, int c)
{
    return a + b * c;
}

Необходимо написать универсальный функтор, применение операции вызова функции к которому приводило бы к выполнению такого кода:

test_opr(f1(x), f2(x));

или

test_opr3(f1(x), f2(x), f3(x));

Функтор должен принимать на вход операцию и перечень функций, результаты работы которых надо передать в качестве аргументов этой операции. Каркас определения такого функтора может выглядеть следующим образом:

        template<typename Op, typename ... F>
class Compositor
{
public:
    Compositor(Op op, F ... fs);
};

Первую задачу, которую необходимо решить — это определить способа сохранения данных, переданных функции. Для этого можно применить множественное наследование от классов, непосредственно хранящих данные заданного типа:

        template<typename T>
struct DataHolder
{
    T m_data;
};

template<typename Op, typename ... F>
class Composer : public DataHolder<F> ...
{
    // ...
};

Но есть некоторая сложность: если в списке передаваемых функций присутствуют несколько функций, типы которых совпадают, то код не скомпилируется, т. к. в списке базовых классов будет присутствовать один и тот же класс. Для устранения этой неоднозначности типы в пакете можно проиндексировать. Для этого будет использоваться вспомогательный тип «кортеж целых чисел», содержащий числа от 0 до заданного в качестве параметра N:

        // Определяем класс собственно кортежа
        template<int ... Idxs> struct IndexesTuple 
{
};

// Определяем общий вид шаблона, используемого для порождения кортежаtemplate<int Num, typename Tp = IndexesTuple<>>
struct IndexTupleBuilder;

// Определяем специализацию, которая генерирует последовательность чисел // в виде пакета целочисленных параметров.// Для этого в качестве второго параметра в объявлении шаблона используется// не собственно тип кортежа, а ранее сформированный пакет. Для получения // итогового пакета наследуемся от порождаемого шаблона, добавляя в пакет // новое числоtemplate<int Num, int ... Idxs> 
struct IndexTupleBuilder<Num, IndexesTuple<Idxs ...>> : IndexTupleBuilder<Num - 1, IndexesTuple<Idxs ..., sizeof ... (Idxs)>> 
{
};

// Терминирующая рекурсию специализация. Содержит итоговый typedef, // определяющий кортеж с нужным набором чиселtemplate<int ... Idxs>
struct IndexTupleBuilder<0, IndexesTuple<Idxs ...>>
{
    typedef IndexesTuple<Idxs...> Indexes;
};

В итоге использовать этот шаблон можно следующим образом:

        typedef
        typename IndexTupleBuilder<6> Indexes;

При этом Indexes будет эквивалентно:

IndexesTuple<0, 1, 2, 3, 4, 5>

Чтобы этот класс был применён в реализации композитора, надо ввести промежуточный базовый класс, который и будет наследником классов с данными. При этом каждый класс с данными будет снабжён своим уникальным индексом:

        template<int idx, typename T>
struct DataHolder
{
    DataHolder(T const& data) : m_data(data) {;}
    
    T m_data;
};

// Сначала объявляем общий шаблон, принимающий на вход кортеж. // Объявление непосредственно в таком виде нам не потребуется, но// оно требуется для последующей специализации.template<typename IdxsTuple, typename ... F> struct ComposerBase;

 // Специализируем общий шаблон, извлекая из кортежа пакет параметров. // В данном случае шаблон объявляется с двумя пакетами параметров. // Это разрешено, т. к. пакеты могут быть однозначно разделены.// При наследовании используется паттерн, в котором упоминается // сразу два пакета параметров. Это позволяет однозначно сопоставить// элементы целочисленного кортежа и перечня типов функций.template<int ... Idxs, typename ... F>
struct ComposerBase<IndexesTuple<Idxs...>, F ...> : public DataHolder<Idxs, F>... 
{
    // А здесь паттерн содержит сразу три пакета - пакет с индексами,     // пакет типов функций и пакет аргументов. Всё это раскрывается в список// инициализации конструктора.
    ComposerBase(F ... fs) : DataHolder<Idxs, F>(fs)... {;}
};

// Наследуем шаблон композитора от описанного выше шаблона, содержащего фактические данныеtemplate<typename Op, typename ... F>
struct Composer : public ComposerBase<typename IndexTupleBuilder<sizeof...(F)>::Indexes, F...>
{
    Op m_op;
public:
    // Объявляем конструктор 
    Composer(Op op, F const &... fs) : m_op(op), Base(fs...) {;}    
};
ПРИМЕЧАНИЕ

Здесь конструкция struct ComposerBase<IndexesTuple<Idxs...>, F ...> : public DataHolder<Idxs, F>... демонстрирует пример синхронного раскрытия двух пакетов параметров. В данном случае – Idxs и F.

Чтобы завершить реализацию композитора, необходимо определить оператор вызова функции. Для удобства его определения сначала определяется тип возвращаемого значения:

        template<typename Op, typename ... F>
struct Composer : /* ... */
{
    Op m_op;
public:
    typedefdecltype(m_op((*(F*)nullptr)(0)...)) result_t;
    // ...
};
ПРИМЕЧАНИЕ

Для определения типа возвращаемого значения используется другая новая для C++ конструкция — decltype. Результатом её применения (в данном случае) является тип возвращаемого функцией значения. Конструкция выглядит несколько странной. По смыслу она эквивалентна такой:

decltype(op(fs(0) ...))

Но поскольку в области видимости класса пакет fs не определён, то оператор применяется к сконвертированному к ссылке на тип функции nullptr.

Теперь всё готово для определения оператора вызова функции. Поскольку классы, хранящие участвующие в композиции функции, в качестве одного из параметров шаблона принимают целочисленный индекс, то этот оператор реализуется через вспомогательную функцию, в которую передаётся всё тот же целочисленный кортеж:

        template<typename Op, typename ... F>
struct Composer : /* ...  */
{
    Op m_op;
public:   
    ret_type operator()(int x) const 
    {
        return MakeCall(x, Indexes());
    }
private:
    // Здесь используется тот же самый трюк, что и в определении класса ComposerBase. Тип кортежа используется для того, чтобы "поймать"// пакет целочисленных индексовtemplate<int ... Idxs>
    ret_type MakeCall(int x, IndexesTuple<Idxs...> const&) const 
    {
        return m_op(DataHolder<Idxs, F>::m_data(x)...);
    }
};

Осталось только определить функцию, облегчающую создание экземпляров этого класса:

        template<typename Op, typename ... F>
Composer<Op, F ...> Compose(Op op, F ... fs)
{
    return Composer<Op, F...>(op, fs ...);
}

и композитор готов. Пара примеров его использования:

        auto f = MakeOp(test_opr, fn1, fn2);
auto ff = MakeOp(test_opr3, fn1, fn2, fn3);
auto ff1 = MakeOp(test_opr3, fn1, fn2, [=](int x) {return f(x) * 5;}); // здесь последним параметром в композитор передаётся лямбда-функция.

Полное определение шаблонного класса-композитора выглядит так:

        template<int ... Idxs, typename ... F>
struct ComposerBase<IndexesTuple<Idxs...>, F ...> : public DataHolder<Idxs, F>... 
{
    ComposerBase(F ... fs) : DataHolder<Idxs, F>(fs)... {;}
};


template<typename Op, typename ... F>
struct Composer : public ComposerBase<typename IndexTupleBuilder<sizeof...(F)>::Indexes, F...>
{
    Op m_op;
public:
    typedef ComposerBase<typename IndexTupleBuilder<sizeof...(F)>::Indexes, F...> Base;
    typedefdecltype(m_op((*(F*)nullptr)(0)...)) result_t;

    Composer(Op op, F const &... fs) : m_op(op), Base(fs...) {;}

    result_t operator()(int x) const 
    {
        return MakeCall(x, typename IndexTupleBuilder<sizeof...(F)>::Indexes());
    }
private:

    template<int ... Idxs>
    result_t MakeCall(int x, IndexesTuple<Idxs...> const&) const 
    {
        return m_op(DataHolder<Idxs, F>::m_data(x)...);
    }
};
СОВЕТ

Также этот класс можно было бы реализовать на базе кортежей из STL (std::tuple). В этом случае в классе DataHolder не было бы необходимости. С использованием std::tuple реализация композитора будет следующей:

        template<typename Op, typename ... F>
class TupleComposer
{
    Op m_op;
    std::tuple<F ...> m_fs;
public:
    typedefdecltype(m_op((*(F*)nullptr)(0)...)) result_t;
    
    TupleComposer(Op op, F... fs) : m_op(op), m_fs(fs ...) {;}

    result_t operator()(int x) const 
    {
        return MakeCall(x, typename IndexTupleBuilder<sizeof...(F)>::Indexes());
    }
private:

    template<int ... Idxs>
    result_t MakeCall(int x, IndexesTuple<Idxs...> const&) const 
    {
        return m_op(std::get<Idxs>(m_fs)
(x)...);
    }
};
СОВЕТ

Такой вариант выглядит несколько проще.

Ещё некоторое количество хитростей

Раскрытие пакета параметров в контексте «список инициализации» предоставляет программисту достаточно большую свободу действий, т. к. в этом случае паттерном может быть полноценное выражение. Например, сумму переданных в качестве аргументов чисел можно посчитать так:

      template<typename ... T>
void ignore(T ...) {;}

template<typename ... T>
int CalcSum(T ... nums)
{
     int ret_val = 0;
     ignore(ret_val += nums ...);
     return ret_val;
}

То же в связке с constexpr:

      template<typename ... T>
constexprint ignore(T ... args)
{
  return 0;
}

template<typename ... T>
constexprint CalcSumImpl(int result, T ... args)
{
  return (ignore(result += args ...)), result;
}

template<typename ... T>
constexprint CalcSum(T ... args)
{
  return CalcSumImpl(0, args ...);
}
ПРИМЕЧАНИЕ

Здесь связка CalcSum - CalcSumImpl нужна для того, чтобы в constexpr-функции появилась именованная переменная-аккумулятор. В противном случае, если вводить её в теле функции, то это не будет удовлетворять требованиям квалификатора constexpr.

Проверить, есть ли среди переданных чисел положительные — так:

      template<typename ... T>
bool HasPositives(T ... nums)
{
    bool ret_val = true;
    ignore(ret_val = ret_val && nums >= 0 ...);
   return ret_val;
}
ПРЕДУПРЕЖДЕНИЕ

При использовании такого метода нельзя забывать, что последовательность вычислений аргументов, передаваемых в функцию, строго говоря, не определена, и в каком именно порядке будут выполнены операции — заранее сказать нельзя.

Подводя итог, можно сказать, что шаблоны с переменным количеством параметров — очень мощное средство, появляющееся в языке C++. Они лишены очевидных недостатков существующих сейчас списков типов (или иных эмуляций подобного поведения), позволяют относительно небольшим объёмом кода выражать достаточно сложные концепции. Приведённые в этой статье конструкции можно сравнить с аналогичными, выполненными в рамках действующего стандарта (для этого можно заглянуть в исходные файлы boost::bind, boost::function, boost::tuple). Но они не лишены и некоторых недостатков. Главный из них — ограниченное число контекстов, в которых пакеты параметров могут раскрываться. В частности, пакеты не могут раскрываться в выражения, чтобы можно было написать, например, так:

      auto result = args + ...;

К элементам пакета нельзя обращаться по индексу.


Copyright 2009-2012 Сергей Садовников.
    Сообщений 2    Оценка 141        Оценить